Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.

نویسندگان

  • Amartya S Banerjee
  • Lin Lin
  • Wei Hu
  • Chao Yang
  • John E Pask
چکیده

The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) can be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale two-dimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. Employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-consistent-field calculations using Chebyshev-filtered subspace iteration

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only ...

متن کامل

Self - consistent - field calculations using Chebyshev - filtered subspace iteration q

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only ...

متن کامل

Chebyshev-filtered subspace iteration method free of sparse diagonalization for DFT calculations

The Kohn-Sham equation in first-principles density functional theory (DFT) calculations is a nonlinear eigenvalue problem. Solving the nonlinear eigenproblem is usually the most expensive part in DFT calculations. Sparse iterative diagonalization methods that compute explicit eigenvectors can quickly become prohibitive for large scale problems. The Chebyshevfiltered subspace iteration (CheFSI) ...

متن کامل

Linearization techniques for band structure calculations in absorbing photonic crystals

Band structure calculations for photonic crystals require the numerical solution of eigenvalue problems. In this paper, we consider crystals composed of lossy materials with frequency-dependent permittivities. Often, these frequency dependencies are modeled by rational functions, such as the Lorentz model, in which case the eigenvalue problems are rational in the eigenvalue parameter. After spa...

متن کامل

Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.

Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-consistent density functional theory (DFT) calculations. In a previous paper, we have proposed a nonlinear Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first self-consistent-field (SCF) iteration. The method may be viewed as an approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 145 15  شماره 

صفحات  -

تاریخ انتشار 2016